

Automatische Paletteninspektion –

Effizienter Tausch durch objektive Bewertung Klasse C Paletten sicher aufspüren und aussortieren

Hamburg, 16.9.2025

VITRONIC in figures

Experience in machine vision

>15.000 cameras

Used in logistics automation produced: (2011 – 2025)

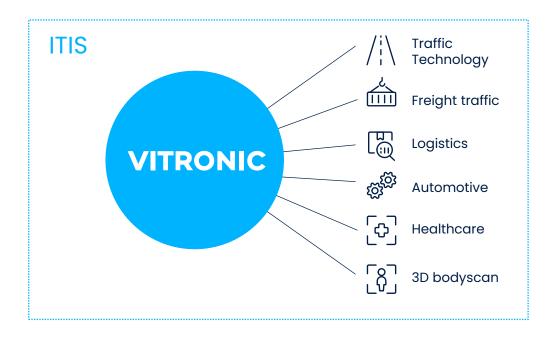
>10.000

systems

Installed globally across CEP,
Postal and E-Commerce

R&D investment in 2023

Al and rules-based processing



World's leading innovation driver for machine vision

A global player for logistics automation

PPF Group


Multi-company group with 52,000 employees worldwide and total assets of 43.5 billion EUR

VITRONIC Logistics focus:

- Warehousing
- Seamless integrations from dock door to dock door
- First, middle, last mile
- Modular and compact DWS systems
- Al integration for big data analysis
 - Predictive maintenance / Condition monitoring
 - Event analytics
 - Item tracking
- ▼ Robotic handling and autonomous mobile robots
- Yard management

The VITRONIC Group

America

Western Europe Central and Eastern Europe

Middle East and Africa

APAC

USA

Brazil
Chile
Canada
Mexico
Colombia

Germany

France Italy

Portugal

Austria
Belgium
Denmark
Great Britain
Netherlands
Scandinavia
Spain

Poland

Estonia
Latvia
Lithuania
Slovakia
Czech Republic
Ukraine

United Arab Emirates

Iraq
Kazakhstan
Kurdistan
Morocco
Oman
Rwanda
Saudi Arabia

Malaysia

Indonesia Philippines Japan Singapore South Korea Taiwan

Thailand Vietnam

China

Australia New Zealand

VITRONIC

AKL-tec GmbH 57518 Alsdorf/Sieg

Palettenvermessung APACHE seit 1996

70 Mitarbeiter in Engineering, Vertrieb und Fertigung

30+ Internationale Integrationspartner

Grenzen zwischen Klasse B+C

Klasse B

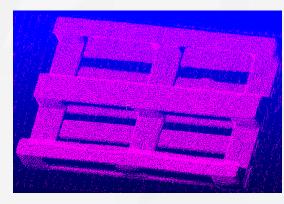
- Keine Anhaftungen
- Keine verdrehten Klötze, Kufen durchgängig
- EPAL-Zeichen erkennbar (mindestens 1x pro Seite)
- Eventuell Reparaturnagel

PDF

EPAL_Qualitaetsklassifizierung_DE_A0_Quer.pdf

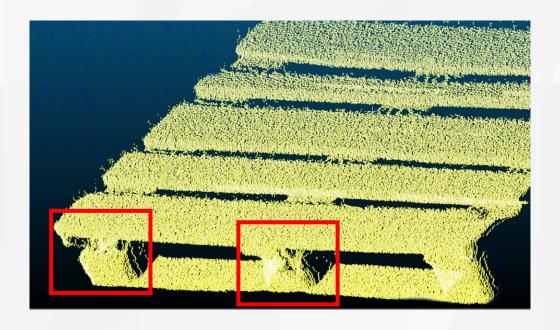
Klasse C

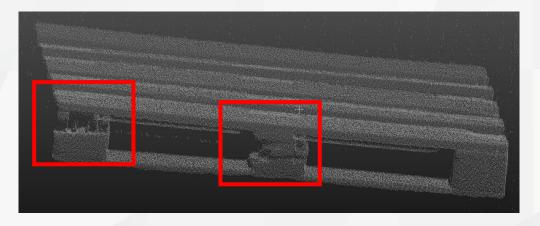
- Anhaftungen möglich und zulässig
- Verdrehte Klötze <1cm zulässig
- EPAL Logo 1x pro Seite lesbar
- Ggf. zertifizierte Reparatur (Reparaturnagel)


Nicht mehr gebrauchsfähig

- Verdrehte Klötze >1cm
- Fehlende Bauteile
- Sichtbare Nägel
- Keine EPAL Logos bzw. nur einseitig
- Gebrochene Elemente

- Aufnahme und Bewertung einer validen Punktwolke mit Hilfe von tastenden Laserscannern (Lidar-Scannern)
- Aufnahme und KI-getriebene Bewertung von 2D-Bildern (Auflicht-Fotos)
- Passive taktile Prüfung der Kufenfreiräume und der Durchgängigkeit der Laufbretter in der Durchfahrt als Option
- Aktive taktile Prüfung durch Anheben, kontrolliertes Spreizen oder Belastung





Aufnahme und Bewertung einer validen Punktwolke mit Hilfe von tastenden Laserscannern (Lidar-Scannern)

- Valide, verzerrungsfreie und metrische Abbildung der Palette als Punktwolke
- Erkennung von Inhomogenitäten
- Kontrolle der Sollmaße wie z.B. Blockdimensionen, Brettbreiten im metrischen Abbild
- Erkennung von unvollständigen oder verdrehten Bauteilen

Aufnahme und KI-getriebene Bewertung von 2D-Bildern (Auflicht-Fotos)

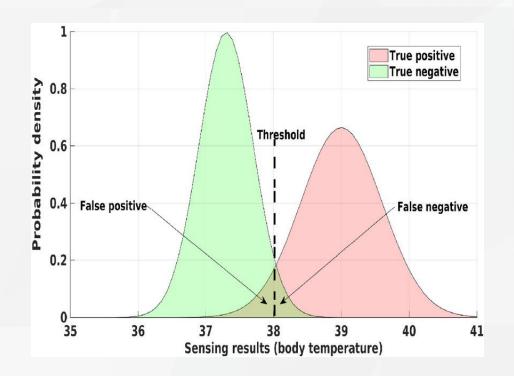
- Erkennung des EPAL- oder anderer Logos
- QR-Tag zur Erfassung des digitalen Zwillings
- Erkennung von
 - Blockdefekten
 - Brüchen
 - fehlenden Bauteilen
- Erkennung von Anhaftungen

Aufnahme und KI-getriebene Bewertung von 2D-Bildern (Auflicht-Fotos)

- Integrierbar in vorhandene Systeme
- Herstellung der Prozessfähigkeit nach Maschinenverordnung

Aufnahme und KI-getriebene Bewertung von 2D-Bildern (Auflicht-Fotos)

Erweitertbarer
 Erkennungsraum



Pessimistischer Klassifikator – Das Falsch-Positiv Problem

- Pessimistischer Klassifikator erzeugt Falsch-Positive Ergebnisse, da (Pessimismus) falsch-negative Ergebnisse ausgeschlossen werden sollen.
- Multiple Einflussgrößen im Unsicherheitsbudget
- Fehlerhafte Klassifikation auf Grund von "Irrtümern" der Kl
- Herstellung der Kalibrierfähigkeit

Das DC-Performance Dilemma

- Reject-Quote im Wareneingang nach Einführung des Systems zu hoch
- Management fordert "Abstellen", da die Performance des Verteilzentrums leidet
- Instandhaltung fordert nachvollziehbare Sensorik (z.B. bewährte Kontur- und Kufenfreiraumkontrolle)
- Falsch-positive Klassifikationen müssen argumentiert werden

- Ramp-Up einplanen
- Einstellen der Schwellwerte (Konfidenz und Maße) und schrittweise Verschärfung der Regeln
- Dokumentation der Problemfälle ohne Aussonderung (Erhöhung der Sichtbarkeit)
- Reduzierung von Falsch-positiven Klassifikationen durch hybride Abtastung

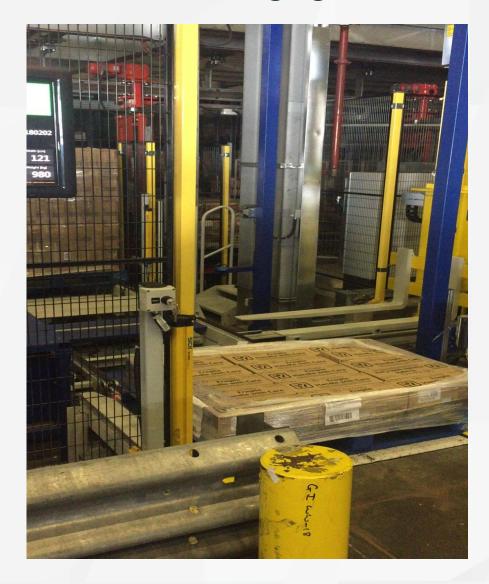
Prüfung von Leerpalettenstapeln – ein Stand-Alone-System-Ansatz

- Beschickung mit komplettem Leerpalettenstapel
- Umstapelung von Paletten zur Verwendung und zur Aussortierung
- Hybride Inspektion (Lidar und Foto)
- Taktile Optionen integrierbar
- Mobiles System



Prüfung von Leerpalettenstapeln – ein Stand-Alone-System-Ansatz

Prüfung von Leerpalettenstapeln – ein Stand-Alone-System-Ansatz



Beispiel: Prüfung von beladenen CHEP-Paletten im Wareneingang

03 109

Vielen Dank für Ihre Aufmerksamkeit!

Für Fragen und Anregungen

Carsten Astner VITRONIC

Hasengartenstraße 14 ■ 65189 Wiesbaden ■ Germany

Telefon: +49 (0) 611 7152 - 0

E-Mail: carsten.astner@vitronic.com

Rüdiger Elben AKL-tec GmbH

Boelstraße 7 • 57518 Alsdorf • Germany

Telefon: +49 (0) 2741 9377 - 111

E-Mail: r.elben@akl-tec.de