

PalettenSymposium 2025

Wohlstandsarroganz im Märchenland – Das Ende globaler Logistik?

Lieferketten in Zeiten von Trump und Taiwan

Hotel Hafen Hamburg, 16. September 2025

Eine kurze Vorstellung

Prof. Dr. Michael Schröder

(*1970, Dipl.-Kfm.)

Duale Hochschule Baden-Württemberg Mannheim

Wissenschaftlicher Leiter

Dualer Master
Supply Chain Management, Logistics, Production

michael.schroeder@dhbw.de

Der Werbeblock: Die Masterstudiengänge der DHBW

Wirtschaft

Accounting, Controlling, Taxation (M.A.)

Data Science and Artificial Intelligence (M.A.)

Digital Business Management (M.A.)

Entrepreneurship (M.A.)

Finance (M.A.)

General Business Management (M.A.)

Marketing (M.A.)

Master of Business Administration (MBA)

Personalmanagement und Wirtschaftspsychologie (M.A)

Sales and Negotiation (M.A.)

Rechnungswesen, Steuern, Wirtschaftsrecht (M.A.)

Supply Chain Management, Logistics, Production (M.A.)

Wirtschaftsinformatik (M.Sc.)

Technik

Bauingenieurwesen (M.Eng.)

Elektrotechnik (M.Eng.)

Executive Engineering (M.Sc.)

Informatik (M.Sc.)

Integrated Engineering (M.Eng.)

Maschinenbau (M.Eng.)

Wirtschaftsingenieurwesen (M.Sc.)

Sozialwesen

Digitalisierung in der Sozialen Arbeit (M.A.)

Governance Sozialer Arbeit (M.A.)

Soziale Arbeit i. d. Migrationsgesellschaft (M.A.)

Sozialplanung (M.A.)

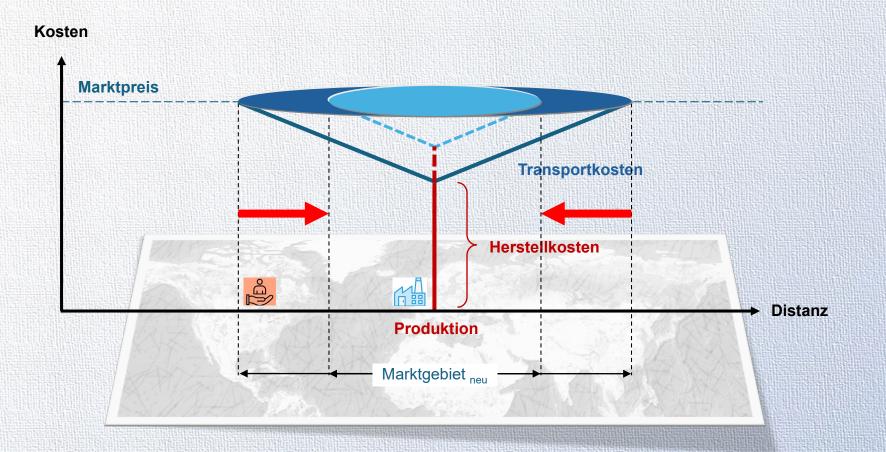
Transkulturelle Traumapädagogik (M.A.)

Gesundheit

Advanced Practice in Healthcare (M.A./M.Sc.)

Intensive Care (M.Sc.)

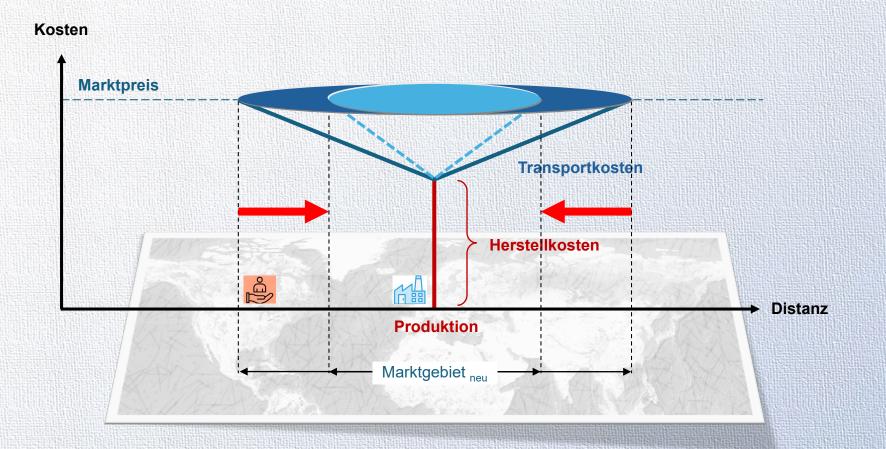
These 1


1 2 3

Der Industriestandort Deutschland ist massiv gefährdet.

Der Launhardt'sche Trichter (1882)

1 2 3



Der Launhardt'sche Trichter (1882)

1 2 3

Deutschland im internationalen Vergleich – Das Verarbeitende Gewerbe

Bruttoverdienst und Lohnnebenkosten je geleistete Stunde

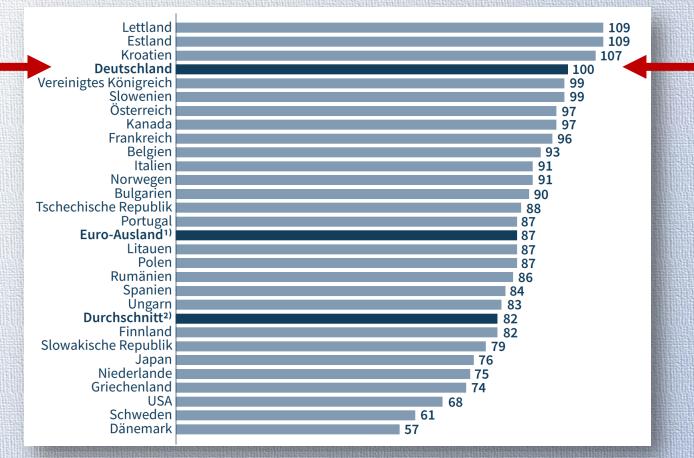
1,90

EUR

Deutschland	44,00	EUR
Tschechien	16,70	EUR
Polen	11,40	EUR
Rumänien	8,30	EUR
Bulgarien	6,80	EUR
Türkei *	4,88	EUR
Mexiko **	4,55	EUR
China ***	3,61	EUR

Philippinen *

Deutschland im internationalen Vergleich – Die Lohnstückkosten


2 3

- Lohnstückkosten* im Ausland über/unter den deutschen Lohnstückkosten → Grafik
- * Lohnstückkosten =

Verhältnis der Arbeitskosten zur Bruttowertschöpfung

Quelle: www.iwkoeln.de; 1) Länder des Euroraums ohne Deutschland, Irland, Kroatien, Luxemburg, Malta und Zypern; 2) Mittelwert der Länder ohne Deutschland, Kroatien, Bulgarien und Rumänien; Abruf: 10.09.2025

These 2

1 2 3

Der Trump'sche Plan wird nicht aufgehen.

Motive von Handelsschranken

Motive

- Schutz heimischer Unternehmen vor Wettbewerb
- Insbesondere Sicherung von Arbeitsplätzen in der Produktion
- Zugang zu Know-how
 - insbesondere über Joint Ventures
 - damit Aufbau heimischer Industriebranchen
- Sicherung von Steuereinnahmen
- Schutz heimischer Kunden vor vermeintlich unmoralischen Gefahren

Grund 1: Öffentliche Infrastruktur

- Aufbau von (Produktions-) Standorten kurzfristig nicht zu bewerkstelligen
 - Suchen und Finden
 - Kauf und finales Erschließen
 - Aufbau einer kompletten Produktion, inklusive Zulieferindustrie
- Top-Management: Start Wertschöpfung versus Amtszeit US-Regierung
- Zeit aussitzen bis Zurücknahme der Zölle spätestens durch eine Nachfolgeregierung

Grund 2: Angebot Humankapital

- Vollbeschäftigung in großen Teilen der USA
- US-System "Hire-and-Fire"
 - hochflexibel
 - aber: geringe Unternehmensbindung
 - Förderung der Fluktuation
 - Aufbau Belegschaft zu Lasten anderer Unternehmen
- Betriebsinterne Ausbildung nach deutschem, dualem System nur punktuell
 - Hochqualifizierte Mechatroniker u. ä. schwer vorstellbar
 - Ausnahmen vor Ort: Bosch, BMW, Mercedes-Benz, Volkswagen und Siemens

Grund 3: Produktionskosten

- Wenn doch neue Standorte, dann
 - nur mittels Kannibalisierung anderer Branchen/Unternehmen
 - attraktiver Arbeitslohn zwingend
- Lohnkosten (bei regionalen Unterschieden) ≥ ein Drittel (!) höher als in Deutschland
- Monatslöhne It. Bureau of Labor Statistics (2024)
 - Verarbeitendes Gewerbe: 5.966 USD
 - Baugewerbe: 6.544 USD
 - Lagerhaltung/Transport 5.068 USD
- Lohnkostenintensive Produktion signifikant teurer

Grund 4: Absatzpotenzial

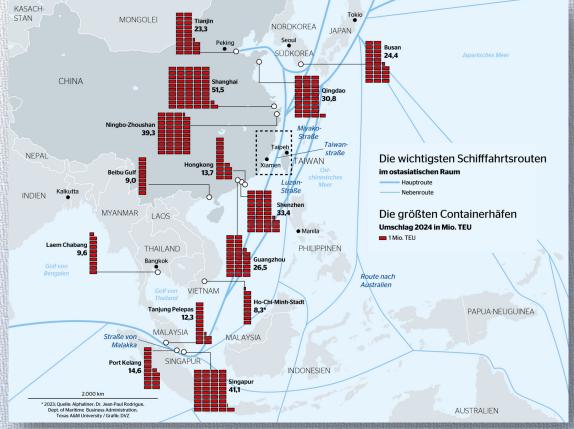
Völlig offen:

- Zahlungsfähigkeit und Zahlungsbereitschaft
 US-amerikanischer Kunden
- Akzeptanz eines (neuen) "Made in USA"
- Globaler Wandel vom "Made in" zum "Made by" in weiten Teilen abgeschlossen
- Referenzbeispiel Apple: iPhone = "Made by Apple", nicht "Made in China"
- Aktuelle Studien: Verkaufspreis iPhone 16 "Made in USA" bei unveränderter Marge 46 % → 2.920 bis 3.500 USD

Quelle: https://edition.cnn.com; 23.05.2025

These 3

1 2 3


Ein Krieg um Taiwan hätte massive globale Folgen.

Lage: Taiwan als militärisch-geografisches Hindernis in Richtung Pazifik

1 2

Beispiel: Die globale Apple-Wertschöpfungskette

1 2

- Prozessor: TSMC (Chips, Taiwan), Rohsilizium
 u.a. Japan, China, USA
- Kamera: Sony (Japan, Sensoren), LG Innotek (Südkorea, Module), Sharp (Japan)
- Display: Samsung, LG (Südkorea), BOE (China)
- Batterie: ATL, Desay (Zellen China), Rohstoffe (Kobalt: Kongo, Nickel: Indonesien, Lithium: Australien/Chile)

- Sensoren: Bosch
 (Deutschland),
 STMicroelectronics
 (Schweiz/Frankreich),
 AMS Osram (Österreich)
- Glas: Corning (USA, Fertigung/Veredelung USA, Japan, Taiwan)
- Mechanikrahmen: Foxconn (Taiwan, Fertigung China/Vietnam); Chassis Edelstahl aus Eisenerz/ Nickel (Australien, Indonesien, Philippinen etc.)

Knapp 30 Prozent der weltweiten Wafer-Produktion noch in TW und CN

|--|

No.	Unternehmen	Land	Wafer/Jahr	Anteil	Hauptprodukte	Wichtigste Kunden
1	TSMC	Taiwan	14-15	20-22 %	Logikchips, High-End- Prozessoren	Apple, Nvidia, AMD, Qualcomm, Broadcom
2	UMC	Taiwan	2	3,0 %	Standard-/Spezialchips	MediaTek, Texas Instruments, Infineon
3	Samsung Electronics	Südkorea	4,5-5	7,0 %	Logik-, Speicherchips	Eigenbedarf, Nvidia, Qualcomm, Tesla
4	SK Hynix	Südkorea	2	3,0 %	Speicherchips (DRAM/NAND)	HP, Dell, Apple, Lenovo
5	Intel	USA	2,5-3	4,0 %	Prozessoren (CPU/GPU)	Eigenbedarf, MediaTek (neu)
6	GlobalFoundries	USA	1,9	3,0 %	Standard-/Spezialchips	AMD, Qualcomm, NXP, STMicroelectronics
7	Micron Technology	USA	1,2	2,0 %	Speicherchips (DRAM/NAND)	HP, Dell, Apple, Lenovo
8	SMIC	China	1,8	3,0 %	Standardchips	HiSilicon, UNISOC, lokale Abnehmer
9	Texas Instruments	USA	1,1	2,0 %	Analoge ICs, Mikrocontroller	Automobilhersteller, Industrieelektronik
10	STMicroelectronics	Schweiz/ Frankreich	1	2,0 %	Sensoren, Mikrocontroller	Automobil, Industrie, Infineon

Quelle: geniusD; GPT-4.1; eigener Prompt; 08.09.2025; in Mio. Wafern/Jahr

Knapp 30 Prozent der weltweiten Wafer-Produktion noch in TW und CN

1 2

No.	Unternehmen	Land	Wafer/Jahr	Anteil	Hauptprodukte	Wichtigste Kunden
11	NXP Semiconductors	Niederlande	0,7-0,8	1,5 %	Mikrocontroller, Automotive- Chips	Automobil, Industrie
12	Infineon	Deutschland	0,7-0,8	1,5 %	Leistungshalbleiter, Sensoren	VW, BMW, Siemens, Bosch
13	Tower Semiconductor	Israel	0,6	1,0 %	Analoge, Spezial-Chips	Broadcom, Panasonic, Skyworks, Medtronic
14	Renesas Electronics	Japan	0,7	1,0 %	Mikrocontroller, Automobilchips	Toyota, Honda, Bosch
15	ON Semiconductor	USA	0,7	1,0 %	Leistungshalbleiter, Sensoren	Automobil, Industrie, mehrere OEMs
16	Toshiba	Japan	0,6	1,0 %	Speicherchips, Leistungshalbleiter	Western Digital, PC-Hersteller
17	Powerchip Technology	Taiwan	0,7	1,0 %	Speicherchips, Logikchips	Kingston, lokale Unternehmen
18	HuaHong Semiconductor	China	0,6	1,0 %	Standard-/Spezialchips	Lokale und asiatische Elektronikhersteller
19	VIS (Vanguard)	Taiwan	0,4	0,8 %	Standardchips	Industrie, Consumer Electronics
20	Nanya Technology	Taiwan	0,4	0,8 %	Speicherchips (DRAM)	Lenovo, HP, Asus

Quelle: geniusD; GPT-4.1; eigener Prompt; 08.09.2025; in Mio. Wafern/Jahr

Aber: Knapp 90 Prozent der leistungsstärksten (!) Chips kommen aus TW

1 2 3

Globale Unabhängigkeit von TW bei Chip-Produktion bis 2030 erreichbar?

- Ja, regionale Produktion USA und EU bei Mittelklasseund älteren Chips (für Automotive, Weiße Ware etc.)
- Nein, bei "Leading-Edge"-Chips (<5 nm, <3 nm) für KI, High-End-CPU, Mobilfunk, Supercomputer
- Risiken und Unsicherheiten
 - Fertigungstiefe: TSMC- oder Samsung-Know-how
 - Zulieferer: Viele Spezialkomponenten aus Asien
 - Fachkräftemangel: Know-how-Transfer massiv schwierig
 - Kostennachteile: Produktion USA/EU teurer als in Asien
 - Nachfragevolumen: Weltmarkt wächst

Herzlichen Dank für Ihre Aufmerksamkeit

Prof. Dr. Michael Schröder

(*1970, Dipl.-Kfm.)

Duale Hochschule Baden-Württemberg Mannheim

Wissenschaftlicher Leiter

Dualer Master
Supply Chain Management, Logistics, Production

michael.schroeder@dhbw.de